
SOLUTION
API PERFORMANCE 
TESTING AT SCALESPOTLIGHT

Background

Challenges

A global financial services company annually needed to conduct performance testing 
and synthetic data generation for an internal API. The scenario involved assessing the 
functionality and scalability of an API where transaction records were stored in a large-
scale Postgres database. The database held a staggering 7 billion records, but the 
sensitive financial data and personally identifiable information (PII) contained in these 
records made typical production data masking untenable due to potential security risks. 
Creating an ad hoc script to mask the data was also deemed too time-consuming. 

GenRocket’s Synthetic Test Data Automation platform was chosen to efficiently generate 
the large volume of synthetic test data required, while ensuring data security and 
referential integrity.

The financial services company faced several challenges in this performance testing 
initiative:

•	 Generating millions of synthetic test data records to adequately stress-test the API

•	 Ensuring a wide variety of conditional data for comprehensive testing

•	 Provisioning data that could not be pulled from production environments due to PII 
concerns

•	 Enabling flexibility to modify data attributes and logic for future testing needs

•	 Avoiding the time-consuming process of manual test data creation or complex 
scripting



GenRocket addressed these challenges through its powerful test data generation 
capabilities:

1.	 Domain Modeling with Custom Generation Logic

2.	 High-Speed Data Generation with Scenario Thread Engine

3.	 Streamlined Execution and Database Integration

GenRocket Solution

•	 Test Data Cases were designed using the GenRocket platform to specify the data 
generation rules for various attributes such as transaction dates, IDs, company 
names, and compliance ratings.

•	 GenRocket’s flexible platform allowed for precise definition of data for testing 
business rules and data variations for both positive and negative test scenarios.

•	 To expedite the creation of the 20 million user records, GenRocket’s Scenario 
Thread Engine was leveraged to perform high speed parallel data generation.

•	 Four concurrent threads were used to generate data across four scenarios, with 
the output organized into six-month intervals per the client’s requirements.

•	 This multi-threaded approach dramatically reduced the time needed to create the 
test data.

•	 The entire data generation process was executed with a single command, greatly 
simplifying the client’s workflow.

•	 Integration with the client’s Postgres database was seamlessly handled through 
a GenRocket properties configuration file specifying the database connection 
details.

•	 This enabled the direct insertion of the generated test data into the database, 
establishing an end-to-end testing process.



GenRocket proved to be instrumental in enabling the global financial services company 
to conduct extensive performance testing of their internal API. The platform’s ability to 
rapidly generate huge volumes of synthetic test data while maintaining referential integrity 
and complex data relationships showcased its versatility and effectiveness.

By leveraging GenRocket, the company significantly reduced their test data generation 
time, achieved comprehensive test coverage, and established an efficient end-to-end 
testing process integrated with their database. The successful execution of this testing 
initiative demonstrated GenRocket’s value in supporting the performance and scalability 
needs of enterprise-scale applications.

Conclusion

Benefits and Achievements

REQUEST A DEMO

By implementing GenRocket, the financial company realized significant benefits:

•	 Massive Scale and Speed 
GenRocket generated test data for 20 million users across four tables, totaling 1.2 
billion attribute values. The same process that previously took 2 days to generate 
1 million users was reduced to just 13 hours for 20 million users—a 74x speed 
improvement.

•	 Comprehensive Test Coverage 
The synthetic data provided by GenRocket enabled thorough testing of the API 
across a wide range of scenarios and edge cases, ensuring robustness and reliability.

•	 Seamless Database Integration 
Direct insertion of test data into the Postgres database was made possible through 
GenRocket’s flexible configuration options, establishing an efficient end-to-end 
testing process.

•	 Time and Effort Savings 
GenRocket’s Test Data Automation platform dramatically reduced the time and 
manual effort required compared to traditional data provisioning approaches, 
allowing the testing team to focus on higher-value tasks.


