
GENROCKET CASE STUDY
Data Refresh: Part of a Seamless Transition to Test Data Generation

BACKGROUND

THE TECHNICAL CHALLENGE

As QA departments introduce Test Data Generation (TDG) into their testing environment, they will
need to support legacy Test Data Management (TDM) functions that are in place to manage their
test data. One of these functions, data refresh, is necessary to keep test data current so it reflects
any changes that have been made to the production database.

With GenRocket, data refresh becomes easy and automated with the help of data model driven
test data generation. The approach is straight forward: Import the current data model for the
given application and then generate (refresh) the data any time, even when there are changes to
the data model.

The QA team at a major insurance company needed to insert new data into their test database as
part of a data refresh process. They were looking to add synthetic test data into an existing table
without changing the existing data. The test data is a MySQL table with 10 columns in which 7
columns already have data and 3 columns need to be populated with data using the GenRocket
TDG platform. GenRocket can be configured to automate this function and refresh the test
database with real-time synthetic test data.

THE GENROCKET SOLUTION
3 new columns have to be added to the Address Table using GenRocket. The following ALTER
statement can be used to add the columns:

HOW IT WORKS

Domains can be created in GenRocket by using the “Import from
DDL” option.

A new Domain is created and assigns the SQLUpdateReceiver as
the Domain Receiver.

The SQLUpdateReceiver connects to a database and performs
batched updates. The update statement is defined on the
Receiver’s data tab.

Attributes whose values will be used in the update statement are
assigned a variable from var1 to var20.

Then the test data is generated using GenRocket and populated in the 3 new columns without
changing existing data in the Address Table. The following UPDATE statement can be used to
populate the data to the columns.

The Alter statement can be added in the Data tab of the SQLUpdateReceiver as shown in the
image below:

Another Domain is created in GenRocket with the following Attributes for generating the data

Column Name Domain Generator Used

secondary_city previewsCity USStateCapitalGen

secondary_state_code previewsStCd USStateAbbrevGen

secondary_mobile_number previewsCellNbr FlexiblePhoneNumberGen

By using SQLUpdateReceiver again we can use the update statement to update the values.

As you can see, we are using var2 var3 and var4 and the condition is added. These variables are
linked with the Attributes in the ‘Attribute Property Keys` tab of the SQLUpdateReceiver.

By using a Scenario Chain, we can run two Scenarios to Alter and Update the table simultaneously.

Here’s a screenshot of the table before populating the data

Here’s a screenshot of the table after running the GenRocket Scenario Chain

IMPACT
By performing a data refresh with GenRocket’s TDG platform, testers can keep their test database
up to date as they combine real-time synthetic test data with their existing production test data.

Real-time synthetic test data brings a higher level of quality and efficiency to their test operation:

With GenRocket, data refresh becomes a function that bridges the gap between the TDM model
of managing and archiving a master copy of the production database and the TDG model in which
test data is generated whenever it’s needed and discarded when it’s not. This allows the two
worlds to gracefully coexist while the testing organization makes a transition to the more efficient
approach of continuous testing with real-time synthetic test data.

If you would like to know more about GenRocket’s Test
Data Generation platform and our industry solutions,
please visit our website at www.genrocket.com.

TEST DATA SPEED
Provisioning test data on-demand at the rate of 1000’s of
rows/second

TEST DATA QUALITY
Precise control of the data subset with patterned and
conditioned data

TEST DATA SECURITY
Eliminating personally identifiable information (PII) from
the data

COST AND SIMPLICITY
Reducing the dependency on costly and cumbersome
TDM systems

http://www.genrocket.com

